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Abstract 

DETERMINATION OF THE BAND GAP BOWING PARAMETER OF A1,Gal-,N 
WITH CONTACTLESS ELECTROREFLECTANCE 

By Laura C. McGlinchey, M.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2006 

Major Director: Martin Mufioz 
Assistant Professor, Department of Physics 

Contactless electroreflectance (CER), a modulation spectroscopy (MS) technique, 

has been used to study the A and C exciton transitions in A1,Gal,N layers for a 

composition range of 0 I x I 0.48 at room temperature. Taking the entire composition 

range ( 0 I x I 1 ) into account by incorporating a previously reported band gap energy for 

AlN, the dependence of the A-exciton transition on composition showed a downward 

bowing from linearity. A bowing parameter of b = 1.7 eV was found. Analysis of the 

lower composition range 0 5 x I 0.48 resulted in a linear fit, as did the trend for the 

detectable C exciton transitions. The slope of the linear trendlines for the A and C 

exciton were practically the same. 
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Chapter 1. Semiconductor materials and their 
application in opto-electronics. 

1.1 Group 111-Nitride Semiconductors 

Group 111-Nitride semiconductor materials have provided the impetus for 

exploding technological capabilities of the current time. Ultra-bright light emitting diodes 

(LEDs) are used for full-color signs, traffic lights, back illumination of hand-held 

displays, and even domestic lighting. LEDs and laser diodes (LDs) emitting in the 

ultraviolet (UV) region have important applications in the biological and chemical fields, 

namely, to monitor or catalyze chemical reactions, excite fluorescence in proteins, and 

detect molecules. UV lasers also have applications in the information technology field, 

particularly in Blu-Ray CDIDVD players and recorders [I], and high-density data storage 

[2] in general. The storage density of today's 1 Gb Digital Versatile Disk (DVD) is 

predicted to go up to about 40 Gb when blue lasers are used. Bluelviolet lasers now 

dominate the Blu-Ray industry [3]. Currently, these devices are based on group III- 

Nitride compounds, and have emission wavelengths between 358 and 440 nm [4,5]. 

In order to produce these UV devices it is necessary to use AlGaN barriers. The 

AlGaN alloy allows for a tunable direct energy gap between 3.42eV and 5.94eV, the 

respective band gaps of GaN and AlN. A1N itself is good in terms of its hardness, high 

thermal conductivity, and its resistance to high temperatures and caustic chemicals. The 

greater the concentration of Al, the higher the transition energy, and the shorter the 

emission wavelength. 
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1.2 AlGaN Obstacles 

The main factor hampering AlGaN mass production is that materials quality 

remains poor at high concentrations of aluminum. Strain due to lattice mismatch between 

AlGaN and the substrates results in low crystalline quality. Non-uniform substrate 

temperatures during the growth process produce composition variations in the A!GaN 

layers containing high A1 concentration. Consequently, A1 composition tends to be 

difficult to determine, as it may vary across a sample. Defects and impurities 

concentrations are uncomfortably high, and manifest themselves in extensive absorption 

tails, which is bad in terms of losses within a device. Band gap measurement resolution 

proves difficult with eminent broadening of signals. 

However, the promise of AlGaN far outweighs the hardships. Many scientists 

and engineers are progressing undoubtedly forward, so that we might see these materials 

dominating devices quite soon. In order to have an accurate design of the UV devices it 

is necessary to know the band gap of the AlGaN alloy as a function of the A1 

concentration. In this thesis, we have studies the band gap (Exciton A) of this alloy using 

contactless electroreflectance (CER). 
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Chapter 2. Optical Techniques for Band Gap 
Determination 

For a fundamental understanding of bulk materials, heterostructures, and 

nanostructures, information on energy transitions and its relation to the band structure, is 

critical. Optical techniques provide non-invasive, accurate, and powerful methods to 

probe band structures and semiconductor properties in a variety of conditions. Many 

factors determine the appropriate technique for a specific study. Among the most popular 

for determining near band gap energies in AlGaN are optical reflection, absorption, 

transmission, photoluminescence (PL), and photoreflectance (PR). Missing from this list 

is contactless electroreflectance (CER), which is the basis of this thesis. 

Reflectivity and other experimental optical techniques have their own unique 

advantages and drawbacks. 

2.1 Band Gap Determination Using Reflectivity 

Optical properties of semiconductors have been exploited for many decades in 

reflectivity measurements. 
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Figure 1. Oblique reflection and transmission of a plane wave by an ambient(0)-film(1)-substrate(2) 
system with parallel-plane boundaries. d is the film thickness, is the angle of incidence in the ambient 

and I $ , ,  I$2 are the angles of refraction in the film and substrate, respectively.[6] 

In the three media (air/film/substrate) model illustrated in Figure 1, the total reflected 

amplitude of an optical plane wave is gi.ven by [6] 

where Rp and R, are the complex amplitude reflection coefficients for the system for an 

incident wave linearly polarized either parallel (p) or perpendicular (s) to the plane of 

incidence. In terms of the interface Fresnel reflection coefficients (rO1, r12), Rp and R, are 

defined as: 

where the subscripts identify the ambient-film (0-1) and film-stubstrate (1-2) interfaces. 

In terms of the refractive indices, the Fresnel coefficients are: 

- n, cos $o - no cos 
'-0lp - n, cos so + no cos 

no cos qbo - n, cos 
rols = no cos 4o + n, cos 

- n, cos - n, cos 42 
52, - n, cos + n, cos 4, 

n, cos 4l - n2 cos 42 
r12s = 

n, cos + n, cos $, 

The phase change /3 results from multiple reflections of the wave inside the film as it 

travels through the film once from one boundary to the other. /3 is given by: 
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where d is .the film thickness, A is the free-space wavelength, E, is the complex index of 

refraction, and @o is the angle of refraction. 

Typical reflectivity spectra show an oscillatory behavior below the band gap of 

the thin film and a damped oscillatory behavior above and around the band gap. From 

equation (4), it is evident that the period of these oscillations depends on the refractive 

index and thickness of the films under consideration. 

Authors regularly assign the first or second minimum or maximum of the 

reflectivity spectra as the position of the band gap [7,8,24], without a reason for this 

assignment. Using equations (1) -through (4), we performed simulations of the 

reflectivity for systems of a i r /G~.~Al~ .~As/GaAs  and airlcubic-GaNIGaAs for various 

film thicknesses. The dielectric function data was obtained from parameters established 

in references [9] and [lo]. The results are shown below in Figures 2 and 3. The arrows 

indicate band gap assignments following the "rule" of the first minimum. The dashed 

vertical line indicates the true value of the band gap. We observe that the position of the 

minimum is dependent on layer thickness. Even the value of the minima directly below 

the band gap underestimates the true value. It is obvious this assignment of the band gap 

according to the position of the extrema in the reflectivity spectrum is wrong. 
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Reflectivity of Ga A1 As 
0.7 0.3 

Energy(eV) 

Figure 2. Reflectivity spectra for an airlG~,7Alo,3AslGaAs for various film thicknesses. 

Reflectivity of cubic-GaN on GaAs 
Eg = 3.25eV 

2:5 3:0 

Energy (eV) 

Figure 3. Reflectivity spectra for an airlcubic GaNIGaAs heterostructure for various film thicknesses 
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Apart from poor resolution, this procedure lacks a consistent model relating the band 

structure to the reflectivity spectrum. 

2.2 Band Gap Determination Using Photoluminescence 

There have been numerous experiments using Photoluminescence (PL) to 

determine the band gaps of semiconductor materials. The primary disadvantage of this 

technique is that PL underestimates the band gap because of its sensitivity to potential 

alloy fluctuations within the material. Figure 4 [I 11 illustrates this effect on the 

conduction and valence energy bands in GaN, and the preferential transition between the 

band extrema. This transition will then dominate the PL spectra, and underestimate the 

band gap energy. 

Figure 4. Alloy 

I 

1 E;- 
fluctuations within the material will create corresponding energy band fluctuations. 

Room temperature PL spectra are characterized by broad bands, mostly due to 

temperature broadening. PL lines related to defects may mask or obscure band gap 

peaks. In addition, the determination of near band gap transitions based on PL 

experiments typically requires high-energy (short wavelength) lasers and cryogenic low 

temperatures. 
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2.3 Band Gap Determination Using Modulation spectroscopy 

The underlying idea of Modulation Spectroscopy (MS) is to vary or modify some 

parameter in the experimental setup, and measure and interpret the resulting changes in 

the optical response, transmission or reflectivity, of the sample. Modulation is classified 

as external, where changes are applied to the sample; or internal, where changes are made 

to the measurement conditions. Examples of external modulation include varying an 

electric field (electromodulation), heat (thermomodulation), or stress (piezomodulation). 

Internal modulation may vary wavelength, slit opening, or polarization conditions. 

2.3.1. Instrumentation in Modulation Spectroscopy Techniques 

External modulation methods include photoreflectance (PR), electroreflectance 

(ER), contactless electroreflectlance (CER), thermoreflectance (THR) techniques, and 

peizoreflectance (PZR). All of the external MS techniques have a common fundamental 

set up, illustrated in Figure 5. 
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) ' Monochromator 

Figure 5. General schematic setup for experimental modulation spectroscopy. 

In the general MS setup, the sample is illuminated by a lamp. Monochromatic 

light is obtained by filtering the lamp's radiation using a monochromator. The variable 

neutral density filter (VNDF) keeps the light intensity constant through a logic loop with 

the servo, which is an electronics component, and the detector. The detector relays the 

direct current (dc) signal to the servo, which adjusts the VNDF in order to keep the 

monochromatic light intensity (dc signal) constant for all wavelengths, and therefore all 

energies, throughout the scan. The lenses in the set up serve to focus the light from the 

monochromator onto the sample, and collect reflected light from the sample into the 

detector. In addition to the monochromatic light, the sample is concurrently exposed to 
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some a.c. modulation such as an electric field, temperature, stress, etc. depending on the 

MS technique in use. This modulation produces small (a.c.) changes in the reflectivity 

for transitions that are detected using a lock-in amplifier. In this work, we modulated an 

electric field about the sample, which is detailed in the following chapter. 
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Chapter 3. Electromodulation 

3.1 Introduction 

Among MS techniques, electromodulation (EM) spectroscopy yields the sharpest 

structure. The resolution power and applicability of this technique to probe band structure 

in fabricated microstructures and thin films, in addition to bulk studies has been 

demonstrated. Specific transitions are identified in terms of energies and broadening 

functions. Even at room temperatures, transition energies may be obtained to within a 

few meV, and over a wide range of energies (0.5eV - 6eV). In addition, EM has the 

ability to analyze built in surface or interface electric fields due to above-band gap 

features, known as Franz-Keldysh Oscillations, present in the EM spectra. Figure 6 

illustrates the outstanding advantages of EM: suppression of uninteresting background, 

and resolution of the transitions. The signals in the spectra are sharp, with derivative- 

like features, and measurements are accurate even at room temperature. 

ENERGY (eV) 
Figure 6. Comparison of room-temperature reflectivity and electroreflectance of GaAs [Pollak]. 
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Electromodulation can be performed in three ways: photoreflectance (PR), 

electroreflectance (ER) and contactless electroreflectance (CER). PR uses a pump source 

(laser) to create an electric field by exciting carriers within the sample. The drawbacks of 

PR are that this method is limited to energies close to the excitation laser, typically 

-3.8eV (HeCd laser) for nitride compounds. Additionally for wide band gap materials, 

PR spectra may include spurious modulated background signal due to strong 

photoluminescence (PL) from the sample, and/or (2) scattered light from the pump 

source. ER disadvantages lie in the contacts necessary for the technique. These contacts 

are not always transparent, a large concern for optical measurement. In addition, surface 

destruction and effects need to be considered. 

CER eliminates many sources of error or difficulties present in other methods, as 

alluded to in the previous chapter. Among MS techniques, CER sidesteps the pitfalls 

present in PR and ER, while retaining the advantage of high resolution of modulation 

spectroscopy at room temperature. Despite these advantages, little work has been done 

on group I11 nitrides with this technique. 

3.2 The Theory of Modulation Spectroscopy 

The fundamental quantity that describes a material's optical response (reflectance 

or transmission) is the complex dielectric function. 

3.2.1 The dielectric function and optical constants 

The dielectric function E is related to the index of refraction n, extinction 

coefficient K, and absorption coefficient a. The dielectric as a function of frequency w , 

and in terms of its real, E,  (w) , and imaginary, E, (w) , parts is expressed as: 



www.manaraa.com

For the complex refractive E index defined as: 

Z ( 0 )  = M ( W )  + iK (W)  

the dielectric function and the complex refractive index are related by: 

The real and imaginary parts of the dielectric function may be defined as: 

The absorption coefficient can be expressed in terms of the above quantities: 

where A is the wavelength of light in vacuum. The absorption coefficient is related to the 

intensity of light passing spatially through a medium by: 

I(r)  = I, exp[- ar] 

where r is the spatial distance in the direction of the light. We see a positive absorption 

coefficient corresponds to an exponential decay of light intensity. Equations ( 9 )  and ( 1  0 )  

are used to relate the absorption coefficient to the imaginary part of the dielectric function 

in terms of transition probability in the following section. 

3.2.2 The dielectric function and band structure 

In order to obtain a relationship between the dielectric function and the band 

structure we will proceed through the following steps [ 121 : 

1.  Treat the electromagnetic field classically. 
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2. Use a quantum mechanical approach to describe the electrons using Bloch 

functions. 

3. Use Fermi's Golden Rule to calculate the transition probability induced by a 

classical electromagnetic field. 

4. With the transition probability, deduce the absorption coefficient a, and 

consequently, the imaginary part of dielectric function rz.. 

5. Use the Kramers-Kronig Relations to derive the imaginary part of the dielectric 

function EI. 

These steps are described in detail in the following pages. 

3.2.2.1 Classical electromagnetic fields 

The electromagnetic field may be expressed in terms of a vector potential A(r, t), 

and a scalar potential cD(r,t) . For simplicity, we will choose the Coulomb gauge [13], 

where 

c D = O  and V.A=O 

The electric and magnetic fields then take the forms: 

1 aA E = ----- and B = V x A  
c at 

where c is the speed of light. 

3.2.2.2 Quantum mechanically described electrons 

Quantum Mechanics describes the effect of an electromagnetic field on the 

electronic states [14]. The electron momentum operator p is replaced to account for the 

field, as shown below. 
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where e is electron charge, A is the vector potential associated with the electromagnetic 

field of the photon. The Hamiltonian of a particle in an electric field takes the form: 

Where mo is the free electron mass. Expanding the first term of (14) yields: 

Since only linear optical effects will be considered here, the term is ignored. So the 

Hamiltonian describing the interaction between the electron and photon reduces to: 

This formula is referred to as the electron-radiation interaction Hamiltonian. 

3.2.2.3 Fermi's Golden Rule 

To calculate the dielectric function from the Hamiltonian of equation (16), we 

need to calculate the transition probability per unit volume for an electron in the valence 

band state iv) and the conduction band state 1 c )  . Assuming a small perturbation due to 

the electron-radiation interaction, or that A is small, we may apply time-dependent 

perturbation theory, in the form of Fermi7s Golden Rule to determine this transition 

probability. We consider a perturbation of the form V(r)exp(&iwt), which induces a 

transition from the initial state to the final state. This time dependency gives rise to the 

delta function found in Fermi's Golden Rule [14], generally stated as: 
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where 9 is transition probability, (f Ivli) is the matrix element representing a particle 

interaction which causes transitions from an initial li) to a final state 1 f ) ,  and 

G(E, - E, + hw) is a delta function involving energies of the final and initial states, 

which arises in the limit as time goes to infinity. In terms of the conduction and valence 

bands, a positive hw implies an electron in the valence band absorbs energy, and is 

excited into the conduction band (absorption). Negative h o  corresponds to emission of 

a photon due to the reverse transition. Regardless, the delta function marks the transition 

as energy-conserving. 

It is necessary to evaluate the matrix element (f vl i )  for a conduction band final 

state and a valence band initial state, and a potential defined by the electron-radiation 

Hamiltonian of equation (1 6). So the matrix element takes the form ( c  1 %  1 v) . 

If we write A as A ; ,  where i? is a unit vector parallel to A, in the direction of the 

polarization, the amplitude A  can be expressed as: 

E 
A  = -- (exp [i(q. r - wt)] + c.c.} 

2q 

Where c.c stands for the complex conjugate. 

For the electron valence and conduction band states written as Bloch functions: 
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and combining (1 9) and (20), one can obtain: 

Evaluating the integral and utilizing the periodicity of the lattice, it is found 

Uc,k, ex~[ i (q  -kc + kv)  r ] ~ u u , k , , d r '  = uc2k,,+q~uV,k, ,dr '  (22) 
unit cell unrt cell 

If we take the photon wavelength to be much larger than the lattice constants, one can use 

the electric dipole approximation, and consider only vertical transitions (k, = k,= k). So 

the matrix element is now: 

unit cell 

For further simplification, we will assume the remaining (2  p )  in the matrix 

element is not strongly dependent on k. We can then replace the momentum matrix 

element in (23) with a constant P,, . Equation (1 8) becomes: 

By substituting equations (19) and (24) into Fermi's Golden Rule (equation (17)), we 

arrive at the electric dipole transition probability 9 for photon absorption per unit time. 
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3.2.2.4 Transition probability and optical constants and the dielectric 

function 

Power lost by the field due to absorption in unit volume of the medium is related 

to the transition probability in equation (25): 

Power loss = 9 tzo (26) 

This power loss can be expressed in terms of the absorption coefficient a or the 

imaginary part of the dielectric function ~2 since the rate of decrease in energy of the 

incident beam per unit volume is given by -dl/dt, for intensity I in equation (lo), and 

absorption coefficient of equation (9). 

, , 
nL 

If we equate this rate of energy loss with the expression for power loss in equation (26), 

we obtain the imaginary part of the dielectric function in terms of the transition 

probability: 

3.2.2.5 Kramers-Kronig relations 

The real part of the dielectric function is obtained through the Krarners-Kronig 

relations (KKRs) [12]: 
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2w " El ( w ' ) d w l  
for E ~ ( w ) = - - P ~  

T O w - w  

where P is the principal value of the integral. With this relationship between the 

imaginary and real parts of the dielectric function and equation (29), we arrive at an 

expression for E, . 

Where Ao,, = E, ( k )  - E, ( k )  . 

3.2.3 Joint density of states and Van Hove singularities 

Instead of summing over the k-states, we will sum over states described by the 

energy. For this purpose, we use the well-known rule involving the density of states 

WE). 1151 

The integration is over the interband energy difference Ecv = Ec ( k )  - E, ( k )  , and the joint 

density of states D, (E,,) is given by [15]: 

where dSk represents the surface in k space, for a constant energy surface S. By 

referencing equation (33), we see the most important contributions to the joint density of 

states comes from the singularities, when 
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Vk(E,,) = o .  (34) 

These so-called Van Hove singularities give rise to the structural features in the dielectric 

function. Equation (34) is fulfilled when 

VkE, (k) = VkE, (k) . (35) 

This will occur when the bands are parallel. When VkE, (k) = 0 , we may expand E,, by 

a Taylor series, preserving only the quadratic terms: 

E,, (k) = E, + a, k: + a, k: + a, ki (36) 

where E, is the band gap. 

Van Hove singularities are classified by the number of negative coefficients a, of 

equation (36). In three dimensions, they are labeled Mo, MI,  M2, and M3 for zero, one, 

two, and three negative coefficients, respectively. In direct band gap materials, the 

lowest energy absorption occurs at an Mo critical point, called the fundamental band gap. 

From the expression in equation (29) for the imaginary part of the dielectric 

function, and the equations (32) and (33), the results of equation (36) allow the 

calculation of dielectric function in terms of energy and a broadening parameter T . For 

Mo critical points [12], 

This relationship provides a more functional form in terms of experiment for both 

1 
E~(E, I?)  K ~ X -  

E 

interpretation and line fitting considerations. 

(E - E, + iI')li2 for 3 0  CPs 

l n (E  - E, +ir) for 2 0  CPS 

(E - E, + ir)-l12 for I D  CPS 
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AR 
Experiment provides us with values of -. These normalized changes in 

R 

reflectivity are related to the changes in the real and imaginary parts of the dielectric 

function (Ar, and As2, respectively). Normal reflectivity R is defined in term of the 

complex index of refraction by: 

Since the changes in the reflectivity due to the perturbation are small (with intensity on 

the order of to one considers the log scale. Taking the derivative of the log of 

R, and employing equations (6) and (7) results in the expression: 

7 -7 

Separating the real and imaginary parts, the normalized changes in reflectivity are written 

in terms of the change in the dielectric function as: 

with the Seraphin coefficients a and P . The Seraphin coefficients can be written as: 

and may be used to compare the real and imaginary contributions of the changes in the 

dielectric function at certain energies. Their typcial behavior is shown below in Figure 7. 



www.manaraa.com

Figure 7. Seraphin coefficients for Ge. Here, P, corresponds to a and Pi to P. 

AR 
Near the fundamental gap in bulk materials, P = 0, so that - = .:A&, . This changes for 

R 

multi-layer structures where interference effects need to be considered. 

Equation (40) provides the link between modulation spectroscopy experiment and 

the MS theory above. The following section delineates this connection in the theory 

behind the data analysis. 

3.2.4 Lineshape Considerations 

In electromodulation, there are three categories of classification: low-, mid- and 

high-field regimes. These are assigned depending on the relative strengths of the 

characteristic electrooptical ( A@ ) energy defined as: 
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for the electric field F, reduced interband effective mass in the direction of the field pll 

(see equation (51) below), and the charge of an electron e .  

h@l 5 T low field 

Ih@l> r, eFao << E, intermediate field 

J A @ ~  t r, eFao = E, high field 

r is the broadening parameter of the MS signal, and a, is the lattice constant. For the 

intermediate and high field, eFa, represent the energy gained by an electron due to the 

electric field perturbation as it is accelerated across the distance of one unit cell. The 

high field can destroy the band structure, in that an external electric field can break the 

translational symmetry of the crystal, which results in the acceleration of unbound 

electrons and holes. This will alter the Hamiltonian in the time-dependent Schrbdinger 

equation. The results for an electron in a crystal subjected to a uniform electric field are 

presented below for the low-field regime. 

3.2.4.1 Low-Field Regime 

The main effect of an electric field on a periodic system is to change the wave 

eFt 
vector fiom k to k - - [15]. According to the semi-classical approach, the expression 

A 

for the wave vector's rate of change is 

We will use this result in equation (29) for an expression of the imaginary dielectric 

function in a low electric field. For cv representing the states in the conduction and 

valence bands, and BZ an abbreviation for the brillouin zone, we can substitute 
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and equations (44) into equation (29),  taking broadening into account. The dielectric is 

now a function of the frequency, the electric field, and the broadening parameter. 

Using the delta function in the form [I  61: 

equation (46) may be written: 

In terms of photon energy, E = Aw , (48) can be rewritten 

2 
2neA eFt 

2 ( )  = ) d k < v r  & [dt exp {-i[Ecv (k --) + i l  Elt 
c,v A 

If we expand the Ecv of (49) in a Taylor series in terms of the field, and consider up to 

the second order term, the expansion takes the form: 

eFt 
[Ecv (k - -)It = Ecv ( k ) t  + A (at)' 

li 
(50) 

where hO is defined by from equation (42) . Note the second term of the expansion is 

zero since we are considering Ecv around critical points. The effective mass tensor p,, , 

which effects the curvature of the energy surface, is defined as [I 51 
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1 d 2 ~ , ( k )  ['I =- 
, for electrons in the conduction band or 

m,(k) h2 ak,i3kJ 

1 d 2 ~ , , ( k )  [&I = 2 a , a k J  
, for holes in the valence band 

1 1 1  
where -=:+, 

Pll mc mv 

This explains the form of the third term of the expansion, the second term of the 

right hand side of equation (50). Substituting this result into equation (49): 

Since the field is small, we can expand the exponential factor: 

Also, for the field F = 0, equation (49) takes the form: 

Using (53) and (54), equation (52) becomes: 

E2 ( E ,  F ,  r )  = 6, ( E ,  0, r )  + 

If we take the third partial derivative of equation (54) with respect to energy, we can 

rewrite (5 5): 



www.manaraa.com

Note that is now obtainable through the Krarners-Kronig relation. Equation (56) 

implies the change in the complex dielectric function in the presence of a weak electric 

field is given by: 

For Lorentzian broadening of equation (57), 

As(E,  F , r )  = AE(E + i r ,  F, 0) 

and equations (40) and (57) can be written simply as 

@ c* ( 6 0 ) ~  ~ e [ e '  ( E  - E, + i I 'rm] 
R 

(59) 
- 

where 6' is the phase angle, and m depends on the critical point type. The phase angle is 

a result of the mixture between the real and imaginary parts of the dielectric function as 

well as the non-uniform electric fields and interference and electron-hole interaction 

effects. In the case of an Mo three dimensional critical point without excitonic effects, the 

dielectric function goes as the square root of the energy: E a ,/- . A third derivative 

would yield m = 512 in equation (59). This process may be applied to Mo critical points 

in one and two dimensions by setting set m accordingly. 

I 5 / 2  for 3 0  CPs 

r n =  3 for2DCPs 

7 / 2  for 1D CPs 

In the case of bound states and excitons, the lineshape equations following (59) 

may be applied if we consider m = 2. The modulating field, in this case, acts to alter the 

exciton binding energy. Details may be found in reference [17]. 
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In summary, lineshapes in CER are fit to (59), and consider (60) as such: 

15 / 2 for 3 0  CPs 

[2 for Excitons 

a ~e [ezB ( E  - E, + iI'rrn] for m = 
R 

3 f o r 2 D  CPs 

7 / 2  for I D  CPs 
(61) 
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Chapter 4. Experimental Procedures and Results 

4.1 Samples Growth 

In molecular beam epitaxy (MBE) growth, GaN surface morphology is very 

sensitive to Ga coverage. A smooth surface can only be observed under Ga rich 

conditions. In the case of AlGaN growth, the surface morphology can also be controlled 

by Ga and A1 coverage: with careful adjustments to their flux, an atomically smooth 

surface can be achieved. The structure of the sample consisted of a 430p m sapphire 

substrate, with a 2 p m  GaN buffer layer grown by metal-organic chemical vapor 

deposition (MOCVD), and finally an MBE-grown AlGaN layer. The MBE system used 

to grow the samples has four Knudsen cells, two Ga and two Al, and one nitrogen RF 

plasma source. For a smooth surface, the growth rates were fixed to about 200 nrn/hour, 

and limited by the nitrogen source. The A1 concentration is controlled by the A1 flux. 

Typical substrate growth temperatures for AlGaN range from 700°C to 750°C. The 

samples in this study were grown in the lab of Dr. Hadis Morkoq at Virginia 

Commonwealth University. 

4.2 Composition Determination by X-Ray Diffraction 

XRD is of great use in solid state physics [18] in that it provides information 

about lattice spacing. The technique is straightforward, and relatively fast. Altering 

angles of the sample allow for observation and analysis of the crystal structure in various 

directions, most useful in determining or verifying lattice constants. 
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Coupled with Vergard's Law - that the lattice constant and alloy concentration are 

linearly related - the ternary alloy composition in semiconductor materials was 

determined. It should be noted here that due to the difficulty in growing high A1 

concentration AlGaN, alloy composition may fluctuate across the surface of these 

samples. Strain due to lattice mismatch with the substrate, and clustering of A1N and 

GaN are probable causes. 

4.2.1 XRD Fundamental Theory 

Diffraction of waves by a crystal is governed by Bragg's Law: 

2dsin0 = nA (62) 

where d is the lattice spacing, 6' is the angle of diffraction, n is the order of diffraction, 

and A is the wavelength of the X-ray. The law states that diffraction occurs only when 

the path difference between sets of incident and reflected plane waves differs by an 

integer number of wavelengths, shown below in Figure 8. When this occurs, all reflected 

waves will be in phase, and their interference will be constructive. 

Figure 8 Plane wave A A' A" A"' is reflected by planes of atoms at B,B',B7',B"' Consider waves 
arriving at C. Path difference A 'B 'C-ABC=2dSin[0]. When 2dSin[O]=nh all partial waves in C direction 

will be in phase. Hence, the interference is constructive. 



www.manaraa.com

The XRD technique used here is the 6 / 2 6 ,  or Gonio, scan. In this scan, the 

sample and detector are rotated with respect to the X-ray beam. In effect, the magnitude 

of Ak is varied while maintaining its normal incidence to sample. Figure 9 illustrates a 

schematic for diffraction in k-space, as well as a diagram of the sample orientation during 

the 812 6 scan. 

(a> (b) 

Figure 9 (a) Difiaction schematic in k-space, where k is a wave vector. (b) Diagram of k, k', and Ak 
relation and orientation in a thetal2theta scan. 

The 812 8 scan identifies peaks at the detector kf for Ak values satisfying the Laue 

diffraction condition, that Ak E G , where G is the reciprocal lattice. 

4.2.2 XRD concentration calculation 

In hexagonal systems, the interplanar spacing d can be expressed as [18]: 

where d is the distance in between adjacent planes, (h,k,l) are plane's coordinates in the 

crystal lattice, and a and c are the lattice constants of the hexagonal structure. 
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Figure 10. Hexagonal wurtzite structure and surface planes 

In the wurtzite structure, shown in Figure 10, there are four symmetry directions along 

the a,, a2, a3, and c axes. The corresponding Miller indices (h,k,j,I) are the whole number 

ratios relating the values along these axes. Utilizing the hexagonal symmetry of the base, 

j = -(h + k), and the Miller indices may be reduced to (h, k,l) . 

Since the structure we are considering is wurtzite along the [0001] direction, the 

spacing between the planes will be the lattice constant c. From Bragg's law, we have 

dsinB = nA (64) 

where d = c in the [0001] direction, n = 1 for the first order of diffraction, and A is the 

wavelength of the x-rays. In our case, the x-rays radiated from a Cu target had a 

wavelength A = 1.54A ( K,  line ). We assign a separate equation for GaN and AlN. 

d,, sin BGaN = nA 
for n = 1 

d,, sin B,, = nA 

Applying given lattice constants in the c direction: cGaN = 5.1 85, and c,, = 4.982, gives 

the resulting diffraction angles without error for first order diffraction: 
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1.54 
sine,,, = - 3 13,, = 17.278" 

5.185 
1.54 

sin 8,, = - 3 e,, = 18.006" 
4.982 

:. e,, - eGaN = 0.7280 

The procedure that we followed to determine the composition of the AlGaN 

layers from XRD data will be shown for sample #2036. Figure 11 is a logarithmic 

experimental XRD data plot, fit with two Gaussian curves. The two peaks correspond to 

GaN and AlGaN. 

Al x Ga I-x N Sample 2036 

28 [degrees] 

Figure 11. A sample XRD logarithmic data spectra and fit with parameters. 

Due to small calibration imperfections, we first calculated the shift in all angle 

measurements from a reference point. For reference, we used the ideal GaN peak 

location from (66) with the fit results for the first peak. From this point, an asterisk (*) 

denotes experimental data. 
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Accounting for the shift, the diffraction angle for this A1,Gal-,N sample was found to be 

17.620 degrees. 

Using Bragg's law (64), the lattice constant for the sample d2036 = c may be calculated for 

the first order diffraction, with A = 1.548+: 

By Vegard's Law, stated specifically for A1,Gal.,N in (70), the lattice constants are 

linearly related to the alloy concentration. Using the known lattice constants, we arrive at 

the concentration of A1 (x) in the sample. 

Sample 2036 is 48% aluminum at the point of the XRD measurement. Similarly, we 

calculated the other sample alloy concentrations. 
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4.2.3 An alternate method 

In literature, a common approximation used in determining concentration from 

XRD spectra is to assume sin B is linear if the considered angle range is small. 

This method begins by assuming the linear relation between the alloy 

concentration and the lattice constants in Vergard's Law, and rearranging as in (71). If 

we substitute Bragg's law for n = 1 into equation (71): 

sin B,, sin BGaN 

This simplifies to the form: 

* .  
sin BGaN - sin BA,GaN 

sin BGaN - sin BA,N 

Assuming sin 6 is linear in the range under consideration the ternary alloy concentration 

is proportional to ratio involving the angles themselves: 

The asterisk (*) indicates experimental XRD data, derived from the same Gaussian fit 

results as used in the previous concentration calculation. 

4.3 Contactless Electroreflectance Experimental Setup 

Electromodulation can be performed without contacts and sample destruction 

during contactless electroreflectance (CER) experiments. CER uses a capacitor-like 

arrangement around the sample, and a modulating high voltage between the capacitor 

plates. Figure 12 illustrates the setup used in this thesis. 
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Figure 12 CER set up. 

Throughout the scan, the modulating electric field about the sample is applied 

between the plates of the capacitor.. This electric field is generated by applying high 

voltage between the capacitor plates, which were the A1 holder and a wire grid. The high 

voltage is produced by passing a TTL reference signal through a high voltage amplifier, 

Trek model 609E-6. The TTL reference signal is generated by a Signal Recovery EG&G 

lock-in amplifier model 7265 at a frequency set to 1-3 kilohertz (kHz). The magnitude of 

the high voltage generated by the Trek amplifier is around 1 kilovolt (I kV peak to peak). 

The sample is attached to the holder (shown in Figure 13) with rubber cement. 

The wire grid, mounted on a plastic insulator, is held about one millimeter (lrnrn) from 

the surface of the sample. 
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Figure 13. CER sample holder. 

A 150W xenon compact arc lamp, set to 135W during experimental runs, is 

powered by the lamp power supply model LPS-2203 from Photon Technology, Inc. 

(PTI). Light from the lamp is controlled by PTI's model 101 monochromator, and a 

variable neutral density filter (VNDF) of our group's own construction The Hamarnatsu 

model H5784-03 solid state photomultiplier detector in our set up has a wavelength range 

between 185 nm and 650 nrn, or energy range of 1.9eV to 6.7eV. The lock-in serves to 

control and record only the signal data coming in from the detector. The detector sends a 

mixture of direct (dc) and alternating current (ac) signals to the lock-in, which splits them 

assigning: 

As previously mentioned, the d.c. is held constant using the VNDF. 

4.4 Data Acquisition (DAQ) 

The computer's data acquisition program is WinPR. The program was previously 

developed by Dr. Muiioz and his co-workers. A menu screen with sample settings is 

shown below in Figure 14. 
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Energy Range 

Wavelength 

(:SRIR) Axis Scale 

BG offset 

DC voltage set 

Step size 

Integration Time 

Figure 14. Data acquisition menu in WinPR. 

The spectral range box (item 1 in Figure 14) was set according to the desired 

energy range. Item 2 displays the current wavelength of the monochromator. Signal 

intensity was on the order of 10 ' 50  lo-', so the Y-Axis scale (item 3) was set 

accordingly. Item 4, the background offset, adjusts the signal to zero for the energy value 

selected, typically the initial scan energy set in item 1. Item 5 defines the DC voltage 

value for the servo normalization. Customarily, the step size (item 6) was set to 5meV 

resolution for a rough transition identification, then to 2meV for higher resolution of the 

transition energy. For noise reduction, the number of scans ranged from 40 to SO. The 

integration time (item 7) sets the time the computer reads the incoming lock-in data. 

WinPR ultimately plots - m(A),  calculated using the dc and ac signals that are the results 
R ( 4  

of the experimental set up (equation (75)), vs. Energy (eV). 
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4.5 CER Results and Analysis 

The A excitonic transition as a function of alloy concentration in A1,Gal-,N has 

been previously studied using several techniques, such as optical absorption [19-221, 

transmission [23], reflection [11,24], photoreflectance (PR) [25], and photoluminescence 

(PL) [11,26,27]. However, the results are controversial with respect to the bowing 

parameter by which defines the A1 concentration x effect on the band gap energy, in the 

established equation (76): 

AIN = xE, + (1 - X)E? - bx(1- x) . (76) 

Reports include a positive (downward), negative (upward), and zero (linear) bowing 

parameter b. Figure 15 illustrates twenty-eight separate band gap measurements as a 

function of alloy concentrations from different sources [ l l ] .  The results are plotted so 

the deviation of the bowing parameter from zero (linear) is apparent. 

Figure 15 Experimental data from published works of A1 composition in AlGaN versus energy band gap 
plotted as the deviation ffom zero bowing [ l  1) 
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It is obvious a consensus has hardly been reached regarding this parameter. The majority 

of the works citing a non-zero bowing parameter propose a positive b value, 

corresponding to a negative deviation from linearity. 

Figure 16 contains the CER spectra and their corresponding fits in dashed and 

solid lines, respectively. 

AlGa N(O<x<48)  
X 1-x - - . 

A10.48Ga0.52N ' n ' #  

4.1 13 

Al 0.44 Ga 0.56 N w***---a - 0  

3.626 Al 0.12 Ga 0.88 N 

----Experimental 
' Fit 

Energy (eV) 

Figure I6 CER spectra of AlXGal,N for 0 5 x 5 0.48 

The fitting was performed in the WinPR program. Lorentzian line shapes were used to fit 

the function described in the lineshape considerations section 3.2.4, with m = 2. The fit 

parameters for each feature were the amplitude, broadening parameter, phase, and band 
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gap energy. The program allowed for fixed and variable setting for each parameter. 

Figure 17 shows the band structure of a 111-Nitride semiconductor around the r point. 

This figure illustrates that the three lowest energy transitions correspond to excitons A, B, 

and C, respectively. 

Band Stl-ucfiu-e of TVlu-tzite GaN 

Figure 17. Band structure of Wurtzite GaN. 

According to the polarization selection rules, the A and B transitions are allowed for light 

E polarization perpendicular to the c-axis. The C transition is allowed for E parallel to 

the c-axis. Because the layers have their c-axis normal to the substrate plane, E l c is 

predominantly obtained, leading to dominant A and B transitions in the spectra. The 

presence of the C transition in the spectra is due to depoloarization originating from strain 

present in the material [34]. The B and C excitons have characteristically and 
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comparatively weaker intensities, and their signals become broader at increased 

temperatures due to increasing oscillator strength. Figure 16 shows the low and high 

energy transitions correspond to the A and C excitons, respectively. 

Table 1 lists the results obtained from Figure 16. We incorporated a previously 

reported value for the band gap of A1N [28] into our data. 

Table 1. A1 concentration XRD measurements and corresponding A-exciton CER energy measurements 

Over the entire composition range, the fundamental exitonic transition, EA, as a function 

A1 concentration 
0 

0.09 
0.1 15 
0.19 

0.205 
0.4 

0.44 
0.48 

1 

of alloy concentration, can be described by a quadratic polynomial fit shown below in 

Figure 18 given by: 

A-exciton energy (eV) 
3.41 9 
3.561 
3.626 
3.651 
3.703 
3.994 
4.165 

- 4.113 
5.94 

C-exciton energy (eV) 
3.463 
3.61 7 
3.676 

not detectable 

3.809 
not detectable 

not detectable 

not detectable 

d a  
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Al Concentration (x) 

6-0- 

5.5 - 

5.0 - 

4.5 - 

4.0 - 

3.5 - 

3.0 

Figure 18. Effect of A1 concentration on the A excitonic transition of AIXGal-,N. 

Al Ga N 
X 1 -x 

AlGaN 

A =3.419+0.852x+1.7x2 

A Expt - Fit 

. I I I I I I t 

The error bars displayed account for 5% of the A1 concentration measurement error either 

0.0 0.2 0.4 0.6 0.8 1 .O 

way ( x + 0.05~ ). Error in excitonic energy was assumed to be one quarter of the signal 

width either way. Our bowing parameter b = 1.7 eV falls towards the higher end of the 

cited range of -0.8eV 5 b 1 2.6eV. The measurements for the higher A1 concentration 

samples are seen to drive the bowing parameter most, yet have the largest error regions. 

It is notable the CER spectra become broader with increasing A1 concentration. This is 

an indication of non-uniformity in the sample. Interstitial A1 atoms and clusters give rise 

to local strain. It has also been suggested this higher bowing paranieter may be explained 

by composition disorder. Larger bandgap differences between the composite alloys cause 

larger potential perturbations. If the main contribution to bowing is the composition 



www.manaraa.com

disorder, the bowing parameter is expected to increase accordingly [29, 301. For 

comparison, the InGaN bowing parameter has been reported as 1.43 eV [3 11. 

If we consider the samples measured by CER in the concentration range of zero to 

forty-eight percent aluminum concentration, 0 1 x 1 0.48, we find a linear shown in 

Figure 19, and given as 

E ; ' ~ " ~  = 3.419+1.51x (78) 

This is in agreement with numerous sources [22, 25, 271. However, all cite linearity (a 

zero bowing parameter) for ranges of samples with low aluminum concentration x 50.4  . 

Al Concentration (x) 

Figure 19. Effect of A1 concentration on the A excitonic transition of AIxGal-,N. 

In addition, for the detectable C exciton transitions, it is notable a linear trend-line with a 

similar slope to (78) fits the data well, as shown in Figure 20, and given by 
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= 3.467+1.70x 

Expt - Linear Fit 

Al Concentration (x) 

Figure 20. Effect of A1 concentration on the C excitonic transition of Al,Ga,.,N 

It has also been shown that strain [32,33] and temperature [34] significantly effect 

the energy gap value. The effect of strain as a function of the layer thickness specific to 

AlXGal-,N is presented in reference [35]. Temperature dependence specific to AlXGal-,N 

can be found in reference [36]. 

One of the main problems we found in this work was the determination of the 

composition by XRD. Non-uniformity throughout the sample may result in composition 

changes across the sample. If XRD measurements were taken in a different location than 

the CER measurements, transition energies would be erroneously paired with aluminum 

concentrations. AlXGal-,N is difficult to grow at high A1 concentrations due to lattice 



www.manaraa.com

mismatch. As such, the uncertainty of concentration measurements becomes greater. As 

can be seen in Figure 18, the trend line underestimates energy transitions of lower A1 

concentration samples. Assuming less composition uncertainty (more uniform growth), 

we see the bowing would be slightly less. 

Despite this uncertainty, this work has furnished experimental results that extend 

beyond typical A1 concentration range for room temperature measurements [20, 21, 23, 

24-26]. We have also successfully utilized CER, a technique that has not been used to 

analyze A1 concentration effects on AlXGal-,N excitonic transitions, yet provides superior 

resolution. 
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Chapter 5. Conclusions 

It has been shown CER is a viable and accurate method in the study of band gaps 

and exciton transitions. Its high resolution at room temperature places it at the forefront 

of optical techniques in terms of desirable experimental traits. 

Using a previously reported A-excitonic energy for A1N [28] and CER spectra of 

samples ranging in A1 concentration for 0 I x I 0.48, our study resulted in a bowing 

parameter b = 1.7 eV for the A exciton over the entire aluminum composition range 

(0 I x I I). This is within the reported range of -0.8 I b 12.6, although includes data 

for comparatively high aluminum concentration samples at room temperature. 

Restricting the fit to 0 I x 2 0.48 concentration, the range of our CER spectra, we found 

AlGaN a linear fit ( EA = 3.41 9 + 1.5 1x ) was able to describe the behavior. The same was true 

AlGaN of the trendline ( E ,  = 3.467 + 1.70~) through the detectable C exciton transitions as a 

function of the composition. 

Sample quality has been an obstacle, as it is difficult to produce highly uniform 

samples of Al,Gal,N with high aluminum concentration. The lattice mismatch and non- 

uniformity account for inaccuracies in composition determination. Stress dependence 

may skew energetic results. 



www.manaraa.com

References 
1. "Blu-ray and HD DVD blitz Vegas show" Compound Semiconductor. 12. No. 1. p. 5. 

JanuaryIFebruary (2006). 

2. T. Maeda, M. Terao, and T.Shimano, "A review of optical disk systems with blue- 

violet laser pickups", Japanese .I Appl. Phys Part 1, 42, 1044 (2003). 

3. H .  Morkoq, Nitride Semiconductors and Devices, Second edition, Springer 2006. 

4. M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, "Ultraviolet 

AlGaN multip!e-quantum-well laser diodes", App. Phys. Lett. 82, 4441 (2003). 

5. S. Nakamura, S. Pearton, and G. Fasol, The blue laser diode: the complete story ; 

Springer, Berlin 2000. 

6. R. M. A. Azzarn and N.M Bashara. Ellipsometry and Polarized Light. North-Holla~d 

Publishing Company. (1 977) 

7. Q.S. Paduano, D.W. Weyburne, L.O. Bouthillette, S. Wang, and M.N. Alexander. Jpn. 
J. Appl. Phys. 41. Part 1, No. 4A. (2002) 

8. B. Gil. Nanotechnology 12. (2001). 

9. E.D. Palik. Handbook of Optical Constants of Solids. Vol. 1. Academic Press. (1985). 

10. M. Muiioz, Y.S. Huang, F.H. Pollak, and H. Yang. J. Appl. Phys. 93. No. 5. (2003). 

11. F. Yun, M.A. Reshchikov, L. He, T. King, H. Morkoq, S.W. Novak, and L. Wei. J. 

Appl. Phys. 92,4837- (2002). 

12. P. Yu and M. Cardona. Fundamentals of Semiconductors: Physics and Materials 

Properties. Springer. (2005). 

13. J.D. Jackson. Classical Electrodynamics, 2nd edn. Wiley, New York. (1975). 

14. L.D. Landau and E.M. Lifshitz, Quantum Mechanics. 3rd edn. Pergannon Press. 

(1 977) 

15. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Thomas Learnin, Inc. (1976). 

16. E. Butkov, Mathematical Physics. chapter 6.4. Addison-Wesley Publishing Company. 

(1 966). 
17. O.J. Glembocki and B.V. Shanabrook, Semiconductors and Semimetals. 36, editors 

D.G. Seiler and C.L. Littler. Academic Press (1992). 

18. B.D. Cullity, Elements ofX-Ray Diffraction, 2nd edition. Addison-Wesley Publishing 

Company, Inc. (1 978). 

19. J. Hagen, R.D. Metcalfe, D. Wickenden, and W. Clark, J. Phys. C: Solid State Phys., 



www.manaraa.com

20. S. Yoshida, S. Misawa, and S. Gonda, J. Appl. Phys. 53,6844-6848 (1982). 

21. Y. Koide, H. Itoh, M.R.H. Khan, K. Hiramatu, N. Sawaki, and I. Akasaki, J. Appl. 

Phys. 61,4540 (1987). 

22. D.K. Wickenden, C.B. Bargeron, W. A. Bryden, J. Miragliotta, and T.J. 

Kistenrnacher, Appl. Phys. Lett. 65,2024 (1994). 

23. M.A. Khan, R.A. Skogman, R.G. Schultze, and M. Gershenzon, Appl. Phys. Lett. 43, 

492-494 (1983). 

24. H. Jiang, G. Y. Zhao, H. Ishikaw~, T. Egawa, T. Jimbo, and M. Umeno, J. Appl. 

Phys. 89, 1046 (2001). 

25. T.J. Ochalski, B. Gil, P. Lefebvre, N. Grandjean, M Leroux, J. Massies, S. Nakamura, 

and H. Morkoq, Appl. Phys. Lett. 74,3353 (1999). 

26. S.R. Lee, A.F. Wright, M. H. Crwford, G.A. Petersen, J. Han, and R.M. Biefeld, 

Appl. Phys. Lett. 74,3344 (1999). 

27. M.R.H. Kahn, Y. Koide, H. Itoh, N. Sawaki, and I. Akasaki, Solid State Commun. 60, 

509 (1986). 
28. E. Silveira, J.A. Freitas, Jr., M. Kneissl, D.W. Treat, N.M. Johnson, G.A. Slack, and 

L. J. Schowalter, Appl. Phys. Lett., 84, No. 18 (2004). 

29. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager 111, S.X. Li, E.E. Haller, H. Lu, W.J. 

Schaff, Universal Bandgap Bowing in Group I11 Nitride Alloys, Solid State 

Communications, 127 (2003). 
30. J.A. Van Vechten and T.K. Bergstresser. Phys. Rev. B. 1, No. 8. (1970). 

31. J. Wu, et. al., Appl. Phys. Lett., 67, 1745. (2002). 

32. G. Steude, B.K. Meyer, A. Goldner, A. Hoffman, A. Kaschner, G Bechstedt, H. 

Arnano, and I. Akasaki. Jpn. J. Appl. Phys. 38. Pt.2, No. 5A (1999). 

33. F.H. Pollak, Semiconductors and Semimetals, Yol. 55, Chapter 4: Effects of External 

Uniaxial Stress on the Optical Properties of Semiconductors and Semiconductor 

Microstructures. Academic Press. (1 998). 

34. B. Gil, ed., F. H. Pollak, Group 111 Nitrides Semiconductor Compounds: Physics and 

Applications. Chapter 5: Modulation spectroscopy of the Group I11 Nitrides. 

Clarendon Press. Oxford. (1 998). 
35 .0 .  Katz, B. Meyler, U. Tisch, and J. Salzman, Phys. Stat. Sol. (a) 188. No. 2 (2001). 
36. D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov. J. 

Appl. Phys. 82, 10, (1997). 



www.manaraa.com

Appendix A 

High Voltage Amplifier & Lock In 

. . . . . . . 

MODEL 609E-6 
t-iGq i:C)l-.iCj; A M D i ' F  El i  

High Voltage Amplifier settings: 

Current Tripkirnit Adjust: 10 

Response Adjust: 0 
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